Областное государственное казённое общеобразовательное учреждение "Школа-интернат для обучающихся с ограниченными возможностями здоровья №16"

Рабочая программа учебного предмета «Математика» для обучающихся 5-9 классов 2023-2024 учебный год (вариант 8.2)

Пояснительная записка

Адаптированная образовательная программа основного общего образования для обучающихся с ограниченными возможностями здоровья (далее соответственно — АОП ООО) разработана на основе Федеральной адаптированной образовательной программы основного общего образования для обучающихся с ограниченными возможностями здоровья и в соответствии с Порядком разработки и утверждения федеральных основных общеобразовательных программ, утверждённым приказом министерства просвещения Российской Федерации от 30 сентября 2022г. №874 (зарегистрирован Министерством юстиции Российской Федерации 2 ноября 2022г., регистрационный № 70809)

Цели реализации адаптированной основной образовательной программы основного общего образования обучающихся с расстройствами аутистического спектра (РАС)

Целями реализации АОП ООО обучающихся с РАС) являются:

- достижение выпускниками планируемых результатов: знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося с РАС среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья, особыми образовательными потребностями; становление и развитие личности обучающегося в ее самобытности, уникальности, неповторимости.
- Достижение поставленных целей при разработке и реализации образовательной организацией адаптированной основной образовательной программы основного общего образования обучающихся с РАС предусматривает решение следующих основных задач:
 - ✓ обеспечение соответствия адаптированной основной образовательной программы требованиям Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО);
 - ✓ обеспечение преемственности уровней начального общего, основного общего, среднего общего образования;
 - ✓ обеспечение доступности получения качественного основного общего образования, достижение планируемых результатов освоения адаптированной основной образовательной программы основного общего образования обучающимися с РАС;
 - ✓ обеспечение необходимой для обучающихся с РАС коррекционноразвивающей направленности учебного процесса;
 - установление требований к воспитанию и социализации обучающихся с РАС как к части образовательной программы и к соответствующему усилению образовательной воспитательного и социализирующего потенциала инклюзивного образовании, к обеспечению организации. подхода в индивидуализированного психолого-педагогического сопровождения каждого обучающегося с РАС, формированию образовательного базиса, основанного не только на знаниях, но и на соответствующем культурном и социальном уровне развития личности обучающегося с РАС, к созданию необходимых условий для ее развития и самореализации;
 - ✓ обеспечение эффективного сочетания урочных и внеурочных форм организации учебных занятий, взаимодействия всех участников образовательных отношений;
 - ✓ взаимодействие образовательной организации при реализации основной образовательной программы с социальными партнерами, в том числе с центрами психолого-педагогической и социальной помощи, общественными организациями;
 - ✓ выявление и развитие способностей обучающихся с РАС, их интересов через

- включение их в деятельность клубов, секций, студий и кружков, включение в общественно полезную деятельность, в том числе с использованием возможностей образовательных организаций дополнительного образования;
- ✓ организацию включения обучающихся с РАС в интеллектуальные и творческие соревнования, научно-техническое творчество, проектную и учебно-исследовательскую деятельность с учетом их возможностей и особых образовательных потребностей;
- ✓ участие обучающихся с РАС, их родителей (законных представителей), педагогических работников и общественности в проектировании и развитии внутришкольной инклюзивной социальной среды, уклада образовательной организации;
- ✓ включение обучающихся с РАС в процессы познания внешкольной социальной среды (населенного пункта, района, города) для приобретения необходимого опыта социального взаимодействия;
- ✓ профессиональная ориентация обучающихся с РАС при поддержке педагогов, психологов, социальных педагогов, сотрудничество с учреждениями профессионального образования, центрами профориентации;
- ✓ сохранение и укрепление физического, психологического и социального здоровья обучающихся с РАС, обеспечение их безопасности.

Общая характеристика учебного предмета «математика»

Рабочая адаптированная программа по математике для обучающихся с РАС 5–9 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации.

В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и

методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач – основой учебной деятельности на уроках математики – развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

Для обучающихся с РАС математическое образование имеет выраженную коррекционно-развивающую направленность, влияет на развитие абстрактного мышления, логического и критического мышления. Также математическое образование направлено на развитие их жизненных компетенций, так как знания и умения, получаемые при изучении предмета «Математика», позволяют использовать их в повседневной жизни и таким образом расширять индивидуальный опыт обучающегося. На развитие жизненной компетенции у обучающихся с РАС также направлено использование в ходе изучения предмета «Математика» практических методов и расчетов. Решение задач из раздела «Реальная математика» является важным элементом формирования жизненных компетенций и способствует формированию у обучающихся с РАС необходимого социального опыта.

Цели и особенности изучения учебного предмета «математика». 5–9 классы Приоритетными целями обучения математике в 5–9 классах являются:

- формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся;
- подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества:
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
- формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

Основные линии содержания курса математики в 5-9 классах: «Числа и вычисления»,

«Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Функции», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное В Федеральном государственном образовательном стандарте основного общего образования требование «уметь оперировать понятиями: определение, аксиома, теорема, доказательство; умение распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне основного общего образования.

Содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно, чтобы овладение математическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включались в общую систему математических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи.

Место учебного предмета «математика» в учебном плане

В соответствии с Федеральным государственным образовательным стандартом основного общего образования математика является обязательным предметом на данном уровне образования. В 5–9 классах учебный предмет «Математика» традиционно изучается в рамках следующих учебных курсов: в 5–6 классах – курса «Математика», в 7–9 классах – курсов «Алгебра» (включая элементы статистики и теории вероятностей) и «Геометрия». Настоящей программой вводится самостоятельный учебный курс «Вероятность и статистика».

Настоящей программой предусматривается выделение в учебном плане на изучение математики в 5-6 классах 5 учебных часов в неделю в течение каждого года обучения, в 7-9 классах 5 учебных часов в неделю в течение каждого года обучения. Тематическое планирование учебных курсов и рекомендуемое распределение учебного времени для изучения отдельных тем, предложенные в настоящей программе, надо рассматривать как примерные ориентиры в помощь составителю авторской рабочей программы и прежде всего учителю. Автор рабочей программы вправе увеличить или уменьшить предложенное число учебных часов на тему, чтобы углубиться в тематику, более заинтересовавшую учеников, или направить усилия на преодоление затруднений. Допустимо также локальное перераспределение и перестановка элементов содержания внутри данного класса. Количество проверочных работ (тематический и итоговый контроль качества усвоения учебного материала) и их тип (самостоятельные и контрольные работы, тесты) остаются на усмотрение учителя. Также учитель вправе увеличить или уменьшить число учебных часов, отведённых в программе на обобщение, повторение, систематизацию знаний обучающихся. Единственным, но принципиально важным критерием, является достижение результатов обучения, указанных в настоящей программе.

Планируемые результаты освоения учебного предмета «математика» на уровне основного общего образования

Освоение учебного предмета «Математика» должно обеспечивать достижение на уровне основного общего образования следующих личностных, метапредметных и предметных образовательных результатов:

Личностные результаты

При оценивании личностных результатов необходимо обеспечить индивидуализацию

этапности освоения образовательных результатов в связи с неравномерностью и особенностями развития обучающегося с РАС. В силу особенностей личностного развития достижение данных результатов в полном объеме на этапе основного обучения в школе обучающимися с РАС не всегда возможно, поэтому рекомендуется оценивать индивидуальную динамику продвижения обучающегося с РАС в данной области.

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Патриотическое воспитание: проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.

Гражданское и духовно-нравственное воспитание: готовностью к выполнению гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного.

Трудовое воспитание: установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.

Эстетическое воспитание: способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.

Ценности научного познания: ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия: готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.

Экологическое воспитание: ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения.

Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:

готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;

необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие;

способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.

Метапредметные результаты

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями.

1) Универсальные **познавательные** действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные рассуждения;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев). Базовые исследовательские действия:
- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
- выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.
- 2) Универсальные коммуникативные действия обеспечивают сформированность социальных навыков обучающихся.

Нарушение общения является базовым нарушением при расстройствах

аутистического спектра, поэтому достижение данных результатов может быть затруднено для обучающихся с РАС. При оценивании овладения УУД в области «Общение» следует оценивать индивидуальные результаты и динамику формирования данных УУД у обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3) Универсальные **регулятивные** действия обеспечивают формирование смысловых установок и жизненных навыков личности.
- У обучающихся с РАС зачастую задерживается фактическое вступление в подростковый возраст, что прежде всего выражается в трудностях формирования рефлексивной деятельности и в задержке овладения учебными действиями самостоятельной постановки учебных целей, действий контроля и оценивания собственной деятельности, развитии инициативы в организации учебного сотрудничества.

Самоорганизация:

• самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

Предметные результаты

Достижение предметных результатов обучающимися с РАС на этапе обучения в основной школе определяется индивидуальными особенностями, связанными как с особенностями познавательной деятельности и неравномерностью развития психических функций, так и социальным опытом аутичных школьников. Поэтому достижение предметных результатов конкретным учащимся может не всегда совпадать с временными границами обучения по годам обучения.

Предметные результаты освоения рабочей программы по математике представлены

по годам обучения в следующих разделах программы в рамках отдельных курсов: в 5–6 классах — курса «Математика», в 7–9 классах — курсов «Алгебра», «Геометрия», «Вероятность и статистика». Развитие логических представлений и навыков логического мышления осуществляется на протяжении всех лет обучения в основной школе в рамках всех названных курсов. Предполагается, что выпускник основной школы сможет строить высказывания и отрицания высказываний, распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, овладеет понятиями: определение, аксиома, теорема, доказательство — и научится использовать их при выполнении учебных и внеучебных задач.

МАТЕМАТИКА 5-6 КЛАССЫ.

Цели изучения учебного курса

Приоритетными целями обучения математике в 5–6 классах являются:

- продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся;
- развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики;
- подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира;
- формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.

Основные линии содержания курса математики в 5–6 классах — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.

Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. Изучение натуральных чисел продолжается в 6 классе знакомством с начальными понятиями теории делимости.

Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании. К 6 классу отнесён второй этап в изучении дробей, где происходит совершенствование навыков сравнения и преобразования дробей, освоение новых вычислительных алгоритмов, оттачивание техники вычислений, в том числе значений выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между ними, рассмотрение приёмов решения задач на дроби. В начале 6 класса происходит знакомство с понятием процента.

Особенностью изучения положительных и отрицательных чисел является то, что они также могут рассматриваться в несколько этапов. В 6 классе в начале изучения темы «Положительные и отрицательные числа» выделяется подтема «Целые числа», в рамках

которой знакомство с отрицательными числами и действиями с положительными и отрицательными числами происходит на основе содержательного подхода. Это позволяет на доступном уровне познакомить учащихся практически со всеми основными понятиями темы, в том числе и с правилами знаков при выполнении арифметических действий. Изучение рациональных чисел на этом не закончится, а будет продолжено в курсе алгебры 7 класса, что станет следующим проходом всех принципиальных вопросов, тем самым разделение трудностей облегчает восприятие материала, а распределение во времени способствует прочности приобретаемых навыков.

При обучении решению текстовых задач в 5–6 классах используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5–6 классах, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

В курсе «Математики» 5–6 классов представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.

Место учебного курса в учебном плане

Согласно учебному плану в 5–6 классах изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры, элементы логики и начала описательной статистики.

Учебный план на изучение математики в 5–6 классах отводит не менее 5 учебных часов в неделю в течение каждого года обучения.

Программа реализуется в учебниках по математики для 5-6 классов (УМК по математики издательства «Просвещение», авторы Бунимович, Дорофеев, Суворова)

1. Содержание курса математики 5-6 классов

Арифметика (213 ч)

5 класс

Натуральные числа (54 ч)

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком. Числовые выражения, значение числового выражения. Порядок действий в числовом выражении, использование скобок. Решение текстовых задач арифметическим способом.

Дроби (54 ч)

Обыкновенная дробь. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого по его части. Решение текстовых задач арифметическим способом.

6 класс Дроби (69 ч)

Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Проценты; нахождение процента от величины и величины по ее проценту. Отношение; выражение отношения в процентах.

Измерения, приближения, оценки (8ч)

Единицы измерения длины, площади, объема, массы, времени, скорости. Приближенное значение величины. Округление натуральных чисел.

Проценты; нахождение процента от величины и величины по ее проценту. Отношение; выражение отношения в процентах.

Рациональные числа (26 ч)

Положительные и отрицательные числа, модуль числа. Множество целых чисел.

Множество рациональных чисел; рациональное число как отношение $\frac{m}{n}$, где m – целое

число, n — натуральное. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.

Координатная прямая; изображение чисел точками координатной прямой.

Измерения, приближения, оценки (2ч)

Округление десятичных дробей

Элементы алгебры (19 ч) 6 класс

Использование букв для обозначения, для записи свойств арифметических действий. Буквенные выражения. Числовое значение буквенного выражения. Допустимые значения букв в выражении.

Уравнение; корень уравнения. Нахождение неизвестных компонентов арифметических действий. Примеры решения текстовых задач с помощью уравнений.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости.

Описательная статистика. Комбинаторика (18 ч)

5 класс (12 ч)

Представление данных в виде таблиц, диаграмм.

Решение комбинаторных задач перебором вариантов.

6 класс (6 ч)

Столбчатые и круговые диаграммы

Решение комбинаторных задач

Наглядная геометрия (66 ч) 5 класс (33 ч)

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Биссектриса угла.

Понятие площади фигуры, единицы измерения площади. Площадь прямоугольника, квадрата.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры

сечений. Многогранники. Правильные многоугольники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

6 класс (33 ч)

Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Логика и множества (4 ч) 6 класс (4 ч)

Множество, элемент множества. Задание множества перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна. Пример и контрпример.

Повторение

5 класс 9 ч

6 класс 11 ч

Распределение часов 5 класс.

Тема	Кол-во часов	
П	0	
Линии	9	
Натуральные числа	12	
Действия с натуральными числами	21	
Использование свойств действий при вычислениях	11	
Углы и многоугольники	9	
Делимость чисел	16	
Треугольники и четырехугольники	10	
Дроби	19	
Действия с дробями	35	
Многогранники	11	
Таблицы и диаграммы	9	
Итоговое повторение	8	
Итоговая контрольная работа.		

Распределение часов 6 класс.

Тема	Кол-во часов
Дроби и проценты	20
Прямые на плоскости и пространстве	7
Десятичные дроби	9

Действия с десятичными дробями	27
Окружность	9
Отношения и проценты	17
Выражения. Формулы. Уравнения	15
Симметрия	8
Целые числа	13
Рациональные числа	17
Многоугольники и многогранники	9
Комбинаторика	8
Повторение	10

Учебно – методическое обеспечение

- 1. **Математика. Арифметика. Геометрия.** 5 класс: *учебник* для общеобразовательных учреждений с приложением на электронном носителе/ Е.А. Бунимович, Г.В. Дорофеев, С.Б. Суворова и др. 2-е изд. М: Просвещение, 2020
- 2. **Математика. Арифметика. Геометрия.** *Темрадь-тренажер.* 5 класс: пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. 3-е изд. М: Просвещение, 2020
- 3. **Математика. Арифметика. Геометрия.** *Задачник*. 5 класс: пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Кузнецова, С.С. Минаева и др. 3-е изд. М: Просвещение, 2020
- 4. **Математика. Арифметика. Геометрия.** *Тетрадь-экзаменатор* 5 класс: пособие для учащихся общеобразовательных учреждений / Н.В. Сафонова 4-е изд. М: Просвещение, 2020
- 5. **Математика. Арифметика. Геометрия.** Поурочное планирование. 5 класс: пособие для учителей общеобразовательных учреждений / Л.В. Кузнецова, С.С. Минаева, Л.О. Россолова, С.Б. Суворова; Российская академия наук, издательство «Просвещение», 2018
- 6. **Математика. Арифметика. Геометрия.** 6 класс: *учебник* для общеобразовательных учреждений с приложением на электронном носителе/ Е.А. Бунимович, Г.В. Дорофеев, С.Б. Суворова и др. 2-е изд. М: Просвещение, 2020
- 7. **Математика. Арифметика. Геометрия.** *Темрадь-мренажер*. 6 класс: пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. 3-е изд. М: Просвещение, 2020
- 8. **Математика. Арифметика. Геометрия.** *Задачник*. 6 класс: пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Кузнецова, С.С. Минаева и др. 3-е изд. М: Просвещение, 2020
- 9. **Математика. Арифметика. Геометрия.** *Тетрадь-экзаменатор* 6 класс: пособие для учащихся общеобразовательных учреждений / Н.В. Сафонова 4-е изд. М: Просвещение, 2020
- 10. **Математика. Арифметика. Геометрия.** Поурочное планирование. 6 класс: пособие для учителей общеобразовательных учреждений / Л.В. Кузнецова, С.С. Минаева, Л.О. Россолова, С.Б. Суворова; Российская академия наук, издательство «Просвещение», 2018.

«АЛГЕБРА». 7–9 КЛАССЫ Цели изучения учебного курса

Алгебра является одним из опорных курсов основной школы: она обеспечивает изучение других дисциплин, как естественнонаучного, так и гуманитарного циклов, её освоение необходимо для продолжения образования и в повседневной жизни. Развитие у обучающихся научных представлений о происхождении и сущности алгебраических абстракций, способе отражения математической наукой явлений и процессов в природе и обществе, роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения и качеств мышления, необходимых для адаптации в современном цифровом обществе. Изучение алгебры естественным образом обеспечивает развитие умения наблюдать, сравнивать, находить закономерности, требует критичности мышления, способности аргументированно обосновывать свои действия и выводы, формулировать утверждения. Освоение курса алгебры обеспечивает развитие логического мышления обучающихся: они используют дедуктивные и индуктивные рассуждения, обобщение и конкретизацию, абстрагирование и аналогию. Обучение алгебре предполагает значительный объём самостоятельной деятельности обучающихся, поэтому образом самостоятельное решение задач естественным является реализацией деятельностного принципа обучения.

В структуре программы учебного курса «Алгебра» основной школы основное место занимают содержательно-методические линии: «Числа и вычисления»; «Алгебраические выражения» ;«Уравнения и неравенства»; «Функции». Каждая из этих содержательно-методических линий развивается на протяжении трёх лет изучения курса, естественным образом переплетаясь и взаимодействуя с другими его линиями. В ходе изучения курса обучающимся приходится логически рассуждать, использовать теоретико-множественный язык. В связи с этим целесообразно включить в программу некоторые основы логики, пронизывающие все основные разделы математического образования и способствующие овладению обучающимися основ универсального математического языка. Таким образом, можно утверждать, что содержательной и структурной особенностью курса «Алгебра» является его интегрированный характер.

Содержание линии «Числа и вычисления» служит основой для дальнейшего изучения математики, способствует развитию у обучающихся логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых для повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием представлений о действительном числе. Завершение освоения числовой линии отнесено к старшему звену общего образования.

Содержание двух алгебраических линий – «Алгебраические выражения» и «Уравнения и неравенства» способствует формированию у обучающихся математического аппарата, необходимого ДЛЯ решения задач математики, смежных предметов практико-ориентированных задач. В основной школе учебный материал группируется вокруг рациональных выражений. Алгебра демонстрирует значение математики как языка для построения математических моделей, описания процессов и явлений реального мира. В задачи обучения алгебре входят также дальнейшее развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Содержание функционально-графической линии нацелено на получение школьниками знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов и явлений в природе и обществе. Изучение этого материала способствует развитию у обучающихся умения использовать различные выразительные средства языка математики — словесные, символические, графические, вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Место учебного курса в учебном плане

Согласно учебному плану в 7–9 классах изучается учебный курс «Алгебра», который включает следующие основные разделы содержания: «Числа и вычисления», «Алгебраические выражения», «Уравнения и неравенства», «Функции».

Учебный план на изучение алгебры в 7–9 классах отводит не менее 3 учебных часов в неделю в течение каждого года обучения.

Содержание учебного курса (по годам обучения) 7 класс

1. Числа и вычисления

Рациональные числа

Дроби обыкновенные и десятичные, переход от одной формы записи дробей к другой. Понятие рационального числа, запись, сравнение, упорядочивание рациональных чисел. Арифметические действия с рациональными числами. Решение задач из реальной практики на части, на дроби.

Степень с натуральным показателем: определение, преобразование выражений на основе определения, запись больших чисел. Проценты, запись процентов в виде дроби и дроби в виде процентов. Три основные задачи на проценты, решение задач из реальной практики.

Применение признаков делимости, разложение на множители натуральных чисел.

Реальные зависимости, в том числе прямая и обратная пропорциональности.

2. Алгебраические выражения

Переменные, числовое значение выражения с переменной. Допустимые значения переменных. Представление зависимости между величинами в виде формулы. Вычисления по формулам. Преобразование буквенных выражений, тождественно равные выражения, правила преобразования сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Свойства степени с натуральным показателем.

Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Разложение многочленов на множители.

3. Уравнения

Уравнение, корень уравнения, правила преобразования уравнения, равносильность уравнений.

Линейное уравнение с одной переменной, число корней линейного уравнения, решение линейных уравнений. Составление уравнений по условию задачи. Решение текстовых задач с помощью уравнений.

Линейное уравнение с двумя переменными и его график. Система двух линейных уравнений с двумя переменными. Решение систем уравнений способом подстановки. Примеры решения текстовых задач с помощью систем уравнений.

4. Координаты и графики. Функции.

Координата точки на прямой. Числовые промежутки. Расстояние между двумя точками координатной прямой.

Прямоугольная система координат, оси Ox и Oy. Абсцисса и ордината точки на координатной плоскости. Примеры графиков, заданных формулами. Чтение графиков реальных зависимостей.

Понятие функции. Γ рафик функции. Свойства функций. Линейная функция, её график. График функции y=/x. Графическое решение линейных уравнений и систем линейных уравнений.

8 класс

1. Числа и вычисления

Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения иррациональных чисел. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям. Действительные числа.

Степень с целым показателем и её свойства. Стандартная запись числа.

2. Алгебраические выражения

Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Рациональные выражения и их преобразование.

3. Уравнения и неравенства

Квадратное уравнение, формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Простейшие дробно-рациональные уравнения.

Графическая интерпретация уравнений с двумя переменными и систем линейных уравнений с двумя переменными. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Системы линейных неравенств с одной переменной.

4. Функции

Понятие функции. Область определения и множество значений функции. Способы задания функций.

График функции. Чтение свойств функции по её графику. Примеры графиков функций, отражающих реальные процессы. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики.

Графическое решение уравнений и систем уравнений.

9 класс

1. Числа и вычисления

Действительные числа

Рациональные числа, иррациональные числа, конечные и бесконечные десятичные дроби. Множество действительных чисел; действительные числа как бесконечные десятичные дроби. Взаимно однозначное соответствие между множеством действительных чисел и координатной прямой.

Сравнение действительных чисел, арифметические действия с действительными числами.

Измерения, приближения, оценки

Размеры объектов окружающего мира, длительность процессов в окружающем мире.

Приближённое значение величины, точность приближения. Округление чисел. Прикидка и оценка результатов вычислений.

2. Уравнения и неравенства

Уравнения с одной переменной

Линейное уравнение. Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвёртой степеней разложением на множители.

Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим методом.

Системы уравнений

Уравнение с двумя переменными и его график. Решение систем двух линейных

уравнений с двумя переменными. Решение систем двух уравнений, одно из которых линейное, а другое – второй степени. Графическая интерпретация системы уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Неравенства

Числовые неравенства и их свойства.

Решение линейных неравенств с одной переменной. Решение систем линейных неравенств с одной переменной. Квадратные неравенства. Графическая интерпретация неравенств и систем неравенств с двумя переменными.

3. Функции

Квадратичная функция, её график и свойства. Парабола, координаты вершины параболы, ось симметрии параболы.

4. Числовые последовательности

Определение и способы задания числовых последовательностей

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой *п*-го члена.

Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов.

Изображение членов арифметической и геометрической прогрессий точками на координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

Планируемые предметные результаты освоения примерной рабочей программы курса (по годам обучения)

Достижение предметных результатов обучающимися с РАС на этапе обучения в основной школе определяется индивидуальными особенностями, связанными как с особенностями познавательной деятельности и неравномерностью развития психических функций, так и социальным опытом аутичных школьников. Поэтому достижение предметных результатов конкретным учащимся может не всегда совпадать с временными границами предметных результатов, распределенных по годам обучения.

Освоение учебного курса «Алгебра» на уровне основного общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

7 класс

Числа и вычисления

- Выполнять, сочетая устные и письменные приёмы, арифметические действия с рациональными числами.
- Находить значения числовых выражений; применять разнообразные способы и приёмы вычисления значений дробных выражений, содержащих обыкновенные и десятичные дроби.
- Переходить от одной формы записи чисел к другой (преобразовывать десятичную дробь в обыкновенную, обыкновенную в десятичную, в частности в бесконечную десятичную дробь).
 - Сравнивать и упорядочивать рациональные числа.
 - Округлять числа.
- Выполнять прикидку и оценку результата вычислений, оценку значений числовых выражений.
 - Выполнять действия со степенями с натуральными показателями.
- Применять признаки делимости, разложение на множители натуральных чисел.
- Решать практико-ориентированные задачи, связанные с отношением величин, пропорциональностью величин, процентами; интерпретировать результаты решения задач с учётом ограничений, связанных со свойствами рассматриваемых объектов.

Алгебраические выражения

- Использовать алгебраическую терминологию и символику, применять её в процессе освоения учебного материала.
- Находить значения буквенных выражений при заданных значениях переменных.
- Выполнять преобразования целого выражения в многочлен приведением подобных слагаемых, раскрытием скобок.
- Выполнять умножение одночлена на многочлен и многочлена на многочлен, применять формулы квадрата суммы и квадрата разности.
- Осуществлять разложение многочленов на множители с помощью вынесения за скобки общего множителя, группировки слагаемых, применения формул сокращённого умножения.
- Применять преобразования многочленов для решения различных задач из математики, смежных предметов, из реальной практики.
- Использовать свойства степеней с натуральными показателями для преобразования выражений.

Уравнения и неравенства

- Решать линейные уравнения с одной переменной, применяя правила перехода от исходного уравнения к равносильному ему. Проверять, является ли число корнем уравнения.
- Применять графические методы при решении линейных уравнений и их систем.
- Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя переменными.
- Строить в координатной плоскости график линейного уравнения с двумя переменными; пользуясь графиком, приводить примеры решения уравнения.
- Решать системы двух линейных уравнений с двумя переменными, в том числе графически.
- Составлять и решать линейное уравнение или систему линейных уравнений по условию задачи, интерпретировать в соответствии с контекстом задачи полученный результат.

Координаты и графики. Функции

- Изображать на координатной прямой точки, соответствующие заданным координатам, лучи, отрезки, интервалы; записывать числовые промежутки на алгебраическом языке.
- Отмечать в координатной плоскости точки по заданным координатам; строить графики линейных функций. Строить график функции y = /x/.
- Описывать с помощью функций известные зависимости между величинами: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объём работы.
 - Находить значение функции по значению её аргумента.
- Понимать графический способ представления и анализа информации; извлекать и интерпретировать информацию из графиков реальных процессов и зависимостей.

8 класс

Числа и вычисления

- Использовать начальные представления о множестве действительных чисел для с ми на координатной прямой.
- Применять понятие арифметического квадратного корня; находить квадратные корни, используя при необходимости калькулятор; выполнять преобразования выражений, содержащих квадратные корни, используя свойства корней.

• Использовать записи больших и малых чисел с помощью десятичных дробей и степеней числа 10.

Алгебраические выражения

- Применять понятие степени с целым показателем, выполнять преобразования выражений, содержащих степени с целым показателем.
- Выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями.
 - Раскладывать квадратный трёхчлен на множители.
- Применять преобразования выражений для решения различных задач из математики, смежных предметов, из реальной практики.

Уравнения и неравенства

- Решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух уравнений с двумя переменными.
- Проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько, и пр.).
- Переходить от словесной формулировки задачи к её алгебраической модели с помощью составления уравнения или системы уравнений, интерпретировать в соответствии с контекстом задачи полученный результат.
- Применять свойства числовых неравенств для сравнения, оценки; решать линейные неравенства с одной переменной и их системы; давать графическую иллюстрацию множества решений неравенства, системы неравенств.

Функции

- Понимать и использовать функциональные понятия и язык (термины, символические обозначения); определять значение функции по значению аргумента; определять свойства функции по её графику.
- Функций трафики элементарных функций; описывать свойства числовой функции по её графику.

9 класс

Числа и вычисления

- Сравнивать и упорядочивать рациональные и иррациональные числа.
- - Выполнять арифметические действия с рациональными числами, сочетая устные и письменные приёмы, выполнять вычисления с иррациональными числами.
- Находить значения степеней с целыми показателями и корней; вычислять значения числовых выражений.
- Округлять действительные числа, выполнять прикидку результата вычислений, оценку числовых выражений.

Уравнения и неравенства

- Решать линейные и квадратные уравнения, уравнения, сводящиеся к ним, простейшие дробно-рациональные уравнения.
- Решать системы двух линейных уравнений с двумя переменными и системы двух уравнений, в которых одно уравнение не является линейным.
- Решать текстовые задачи алгебраическим способом с помощью составления уравнения или системы двух уравнений с двумя переменными.
- Проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько, и пр.).
- Решать линейные неравенства, квадратные неравенства; изображать решение неравенств на числовой прямой, записывать решение с помощью символов.

- Решать системы линейных неравенств, системы неравенств, включающие квадратное неравенство; изображать решение системы неравенств на числовой прямой, записывать решение с помощью символов.
 - Использовать неравенства при решении различных задач.

Функции

- Распознавать функции изученных видов. Показывать схематически расположение на координатной плоскости графиков функций в зависимости от значений коэффициентов; описывать свойства функций.
- Строить и изображать схематически графики квадратичных функций, описывать свойства квадратичных функций по их графикам.
- Распознавать квадратичную функцию по формуле, приводить примеры квадратичных функций из реальной жизни, физики, геометрии.

Арифметическая и геометрическая прогрессии

- Распознавать арифметическую и геометрическую прогрессии при разных способах задания.
- Выполнять вычисления с использованием формул n-го члена арифметической и геометрической прогрессий, суммы первых n членов.
 - Изображать члены последовательности точками на координатной плоскости.
- Решать задачи, связанные с числовыми последовательностями, в том числе задачи из реальной жизни (с использованием калькулятора, цифровых технологий).

Распределение часов

9 класс

Основное содержание по темам	Количество	
	часов	
Квадратичная функция	22	
Уравнения и неравенства с одной переменной.	14	
Уравнения и неравенства с двумя переменными.	17	
Арифметическая и геометрическая прогрессии.	15	
Элементы комбинаторики и теории вероятностей.	13	
Повторение	21	

Описание учебно-методического и материально- технического обеспечения образовательной деятельности

- 1. Макарычев Ю. Н. Алгебра, 7 кл.: учебник для общеобразовательных организаций / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под редакцией С. А. Теляковского. М.: Просвещение, 2020.
- 2. Макарычев Ю. Н. Алгебра, 8 кл.: учебник для общеобразовательных организаций / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под редакцией С. А. Теляковского. М.: Просвещение, 2020.
- 3. Макарычев Ю. Н. Алгебра, 9 кл.: учебник для общеобразовательных организаций / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под редакцией С. А.

Теляковского. — М.: Просвещение, 2020.

- 4. Звавич Л. И. Алгебра, 7 кл.: дидактические материалы / Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова. М.: Просвещение, 2021.
- 5. Жохов В. И. Алгебра, 8 кл.: дидактические материалы / В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк. М.: Просвещение, 2019.
- 6. Макарычев Ю. Н. Алгебра, 9 кл.: дидактические материалы / Ю. Н. Макарычев, Н. Г. Миндюк, Л. Б. Крайнева. М.: Просвещние, 2019

Распределение часов по алгебре (индивидуальное обучение) 1 час в неделю.

Основное содержание по темам	Кол-во часов	
Квадратичная функция	9	
Уравнения и неравенства с одной переменной.	5	
Уравнения и неравенства с двумя переменными.	5	
Арифметическая и геометрическая прогрессии.	7	
Элементы комбинаторики и теории вероятностей.	6	
Повторение	1	

Распределение часов по геометрии (индивидуальное обучение) 1 час в неделю

Наименование разделов	Кол-во часов
Векторы. Метод координат	11
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов	7
Длина окружности и площадь круга	10
Движения	5

Распределение часов по физике (индивидуальное обучение) 1час в неделю

Тема	Кол-во часов инд. обуч
Кинематика	4
Динамика	4
Гравитационные явления	5
Колебания и волны	6
Электромагнитные явления	5
Электромагнитная природа света	4
Квантовые явления	4
Строение и эволюция Вселенной	

«ГЕОМЕТРИЯ». 7-9 КЛАССЫ

Цели изучения учебного курса

«Математику уже затем учить надо, что она ум в порядок приводит», — писал великий русский ученый Михаил Васильевич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как составной части математики в школе. Этой цели соответствует доказательная линия преподавания геометрии. Следуя представленной рабочей программе, начиная с седьмого класса на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения «от противного», отличать свойства от признаков, формулировать обратные утверждения.

Место учебного курса в учебном плане

Согласно учебному плану в 7–9 классах изучается учебный курс «Геометрия», который включает следующие основные разделы содержания: «Геометрические фигуры и их свойства», «Измерение геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения плоскости» и «Преобразования подобия».

Учебный план предусматривает изучение геометрии на базовом уровне, исходя из не менее 68 учебных часов (7-8 классы) и 66 учебных часов (9 класс) в учебном году, всего за три года обучения – не менее 202 часов.

Содержание учебного курса (по годам обучения)

7 класс

Начальные понятия геометрии. Точка, прямая, отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Ломаная, многоугольник. Параллельность и перпендикулярность прямых.

Симметричные фигуры. Основные свойства осевой симметрии. Примеры симметрии в окружающем мире.

Основные построения с помощью циркуля и линейки. Треугольник. Высота, медиана, биссектриса, их свойства.

Равнобедренный и равносторонний треугольники. Неравенство треугольника.

Свойства и признаки равнобедренного треугольника. Признаки равенства треугольников.

Свойства и признаки параллельных прямых. Сумма углов треугольника. Внешние углы треугольника.

Прямоугольный треугольник. Свойство медианы прямоугольного треугольника, проведённой к гипотенузе. Признаки равенства прямоугольных треугольников. Прямоугольный треугольник с углом в 30 градусов.

Неравенства в геометрии: неравенство треугольника, неравенство о длине ломаной, теорема о большем угле и большей стороне треугольника. Перпендикуляр и наклонная.

Геометрическое место точек. Биссектриса угла и серединный перпендикуляр к отрезку как геометрические места точек.

Окружность и круг, хорда и диаметр, их свойства. Взаимное расположение окружности и прямой. Касательная и секущая к окружности. Окружность, вписанная в угол. Вписанная и описанная окружности треугольника.

8 класс

Четырёхугольники. Параллелограмм, его признаки и свойства. Частные случаи параллелограммов (прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая трапеция, её свойства и признаки. Прямоугольная трапеция.

Метод удвоения медианы. Центральная симметрия. Теорема Фалеса и теорема о пропорциональных отрезках.

Средние линии треугольника и трапеции. Центр масс треугольника.

Подобие треугольников, коэффициент подобия. Признаки подобия треугольников. Применение подобия при решении практических задач.

Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма, ромба и трапеции. Отношение площадей подобных фигур.

Вычисление площадей треугольников и многоугольников на клетчатой бумаге.

Теорема Пифагора. Применение теоремы Пифагора при решении практических задач.

Синус, косинус, тангенс острого угла прямоугольного треугольника. Основное тригонометрическое тождество. Тригонометрические функции углов в 30 градусов, 45 градусов и 60 градусов.

Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и секущими. Вписанные и описанные четырёхугольники. Взаимное расположение двух окружностей. Касание окружностей. Общие касательные к двум окружностям.

9 класс

Синус, косинус, тангенс углов от 0 до 180 градусов. Основное тригонометрическое тождество. Формулы приведения.

Решение треугольников. Теорема косинусов и теорема синусов. Решение практических задач с использованием теоремы косинусов и теоремы синусов.

Преобразование подобия. Подобие соответственных элементов.

Теорема о произведении отрезков хорд, теоремы о произведении отрезков секущих, теорема о квадрате касательной.

Вектор, длина (модуль) вектора, сонаправленные векторы, противоположно направленные векторы, коллинеарность векторов, равенство векторов, операции над векторами. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов, применение для нахождения длин и углов.

Декартовы координаты на плоскости. Уравнения прямой и окружности в координатах, пересечение окружностей и прямых. Метод координат и его применение.

Правильные многоугольники. Длина окружности. Градусная и радианная мера угла, вычисление длин дуг окружностей. Площадь круга, сектора, сегмента.

Движения плоскости и внутренние симметрии фигур (элементарные представления). Параллельный перенос. Поворот.

Планируемые предметные результаты освоения примерной рабочей программы курса (по годам обучения)

Достижение предметных результатов обучающимися с РАС на этапе обучения в основной школе определяется индивидуальными особенностями, связанными как с особенностями познавательной деятельности и неравномерностью развития психических функций, так и социальным опытом аутичных школьников. Поэтому достижение предметных результатов конкретным учащимся может не всегда совпадать с временными границами обучения, распределенными по годам обучения.

Освоение учебного курса «Геометрия» на уровне основного общего образования должно обеспечивать достижение следующих предметных образовательных результатов:

7 класс

- Распознавать изученные геометрические фигуры, определять их взаимное расположение, изображать геометрические фигуры; выполнять чертежи по условию задачи. Измерять линейные и угловые величины. Решать задачи на вычисление длин отрезков и величин углов.
- Делать грубую оценку линейных и угловых величин предметов в реальной жизни, размеров природных объектов. Различать размеры этих объектов по порядку величины.
 - Строить чертежи к геометрическим задачам.
- Пользоваться признаками равенства треугольников, использовать признаки и свойства равнобедренных треугольников при решении задач.

- Проводить логические рассуждения с использованием геометрических теорем.
- Пользоваться признаками равенства прямоугольных треугольников, свойством медианы, проведённой к гипотенузе прямоугольного треугольника, в решении геометрических задач.
- Определять параллельность прямых с помощью углов, которые образует с ними секущая. Определять параллельность прямых с помощью равенства расстояний от точек одной прямой до точек другой прямой.
 - Решать задачи на клетчатой бумаге.
- Проводить вычисления и находить числовые и буквенные значения углов в геометрических задачах с использованием суммы углов треугольников и многоугольников, свойств углов, образованных при пересечении двух параллельных прямых секущей. Решать практические задачи на нахождение углов.
- Владеть понятием геометрического места точек. Уметь определять биссектрису угла и серединный перпендикуляр к отрезку как геометрические места точек.
- Формулировать определения окружности и круга, хорды и диаметра окружности, пользоваться их свойствами. Уметь применять эти свойства при решении задач.
- Владеть понятием описанной около треугольника окружности, уметь находить её центр. Пользоваться фактами о том, что биссектрисы углов треугольника пересекаются в одной точке, и о том, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
- Владеть понятием касательной к окружности, пользоваться теоремой о перпендикулярности касательной и радиуса, проведённого к точке касания.
- Пользоваться простейшими геометрическими неравенствами, понимать их практический смысл.
- Проводить основные геометрические построения с помощью циркуля и линейки.

8 класс

- Распознавать основные виды четырёхугольников, их элементы, пользоваться их свойствами при решении геометрических задач.
- Применять свойства точки пересечения медиан треугольника (центра масс) в решении задач.
- Владеть понятием средней линии треугольника и трапеции, применять их свойства при решении геометрических задач. Пользоваться теоремой Фалеса и теоремой о пропорциональных отрезках, применять их для решения практических задач.
- Применять признаки подобия треугольников в решении геометрических задач.
- Пользоваться теоремой Пифагора для решения геометрических и практических задач. Строить математическую модель в практических задачах, самостоятельно делать чертёж и находить соответствующие длины.
- Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятиями для решения практических задач.
- Вычислять (различными способами) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практических задачах.
- Владеть понятиями вписанного и центрального угла, использовать теоремы о вписанных углах, углах между хордами (секущими) и угле между касательной и хордой при решении геометрических задач.

- Владеть понятием описанного четырёхугольника, применять свойства описанного четырёхугольника при решении задач.
- Применять полученные знания на практике строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрии (пользуясь, где необходимо, калькулятором).

9 класс

- Знать тригонометрические функции острых углов, находить с их помощью различные элементы прямоугольного треугольника («решение прямоугольных треугольников»). Находить (с помощью калькулятора) длины и углы для нетабличных значений.
- Пользоваться формулами приведения и основным тригонометрическим тождеством для нахождения соотношений между тригонометрическими величинами.
- Использовать теоремы синусов и косинусов для нахождения различных элементов треугольника («решение треугольников»), применять их при решении геометрических задач.
- Владеть понятиями преобразования подобия, соответственных элементов подобных фигур. Пользоваться свойствами подобия произвольных фигур, уметь вычислять длины и находить углы у подобных фигур. Применять свойства подобия в практических задачах. Уметь приводить примеры подобных фигур в окружающем мире.
- Пользоваться теоремами о произведении отрезков хорд, о произведении отрезков секущих, о квадрате касательной.
- Пользоваться векторами, понимать их геометрический и физический смысл, применять их в решении геометрических и физических задач. Применять скалярное произведение векторов для нахождения длин и углов.
- Пользоваться методом координат на плоскости, применять его в решении геометрических и практических задач.
- Владеть понятиями правильного многоугольника, длины окружности, длины дуги окружности и радианной меры угла, уметь вычислять площадь круга и его частей. Применять полученные умения в практических задачах.
- Находить оси (или центры) симметрии фигур, применять движения плоскости в простейших случаях.
- Применять полученные знания на практике строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрических функций (пользуясь, где необходимо, калькулятором).

Наименование разделов и тем.	Кол-во часов
Векторы. Метод координат	18
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов	11
Длина окружности и площадь круга	12
Движения	8
Об аксиомах геометрии. Начальные сведения из стереометрии.	10
Повторение	9

Используемый учебно-методический комплект:

- 1. Атанасян Л. С. Геометрия. 7-9 кл.: учебник / Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др. М.: Просвещение.
- 2. Атанасян Л. С. Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя / Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.:
- 3. Мельникова Н. Б. Контрольные работы по геометрии, 7 класс: к учебнику Л. С. Атанасяна « Геометрия, 7-9»/ Н. Б. Мельникова-М.: Изд. «Экзамен».
- 4. Алтынов П. И. Геометрия. Тесты. 7-9 классы: учеб.-мет. пособие / П. И. Алтынов-М.: Дрофа.

«ВЕРОЯТНОСТЬ И СТАТИСТИКА». 7-9 КЛАССЫ

Цели изучения учебного курса

В современном цифровом мире вероятность и статистика приобретают всё большую значимость, как с точки зрения практических приложений, так и их роли в образовании, необходимом каждому человеку. Возрастает число профессий, при овладении которыми требуется хорошая базовая подготовка в области вероятности и статистики, такая подготовка важна для продолжения образования и для успешной профессиональной карьеры.

Каждый человек постоянно принимает решения на основе имеющихся у него данных. А для обоснованного принятия решения в условиях недостатка или избытка информации необходимо в том числе хорошо сформированное вероятностное и статистическое мышление.

Именно поэтому остро встала необходимость сформировать у обучающихся функциональную грамотность, включающую в себя в качестве неотъемлемой составляющей умение воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных процессов и зависимостей, производить простейшие вероятностные расчёты. Знакомство с основными принципами сбора, анализа и представления данных из различных сфер жизни общества и государства приобщает обучающихся к общественным интересам. Изучение основ комбинаторики развивает навыки организации перебора и подсчёта числа вариантов, в том числе, в прикладных задачах. Знакомство с основами теории графов создаёт математический фундамент для формирования компетенций в области информатики и цифровых технологий. Помимо этого, при изучении статистики и вероятности обогащаются представления учащихся о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

В соответствии с данными целями в структуре программы учебного курса «Вероятность и статистика» основной школы выделены следующие содержательно-методические линии:

«Представление данных и описательная статистика»; «Вероятность»; «Элементы комбинаторики»; «Введение в теорию графов».

Содержание линии «Представление данных и описательная статистика» служит основой для формирования навыков работы с информацией: от чтения и интерпретации информации, представленной в таблицах, на диаграммах и графиках до сбора, представления и анализа данных с использованием статистических характеристик средних и рассеивания. Работая с данными, обучающиеся учатся считывать и интерпретировать данные, выдвигать, аргументировать и критиковать простейшие гипотезы, размышлять над факторами, вызывающими изменчивость, и оценивать их влияние на рассматриваемые величины и процессы.

Интуитивное представление о случайной изменчивости, исследование закономерностей и тенденций становится мотивирующей основой для изучения теории вероятностей. Большое значение здесь имеют практические задания, в частности опыты с классическими вероятностными моделями.

Понятие вероятности вводится как мера правдоподобия случайного события. При изучении курса обучающиеся знакомятся с простейшими методами вычисления вероятностей в случайных экспериментах с равновозможными элементарными исходами, вероятностными законами, позволяющими ставить и решать более сложные задачи. В курс входят начальные представления о случайных величинах и их числовых характеристиках.

Также в рамках этого курса осуществляется знакомство обучающихся с множествами и основными операциями над множествами, рассматриваются примеры применения для решения задач, а также использования в других математических курсах и учебных предметах.

Место учебного курса в учебном плане

В 7–9 классах изучается курс «Вероятность и статистика», в который входят разделы: «Представление данных и описательная статистика»; «Вероятность»; «Элементы комбинаторики»; «Введение в теорию графов».

На изучение данного курса отводит 1 учебный час в неделю в течение каждого года обучения, всего 102 учебных часа.

Содержание учебного курса (по годам обучения)

7 класс

Представление данных в виде таблиц, диаграмм, графиков. Заполнение таблиц, чтение и построение диаграмм (столбиковых (столбчатых) и круговых). Чтение графиков реальных процессов. Извлечение информации из диаграмм и таблиц, использование и интерпретация данных.

Описательная статистика: среднее арифметическое, медиана, размах, наибольшее и наименьшее значения набора числовых данных. Примеры случайной изменчивости.

Случайный эксперимент (опыт) и случайное событие. Вероятность и частота. Роль маловероятных и практически достоверных событий в природе и в обществе. Монета и игральная кость в теории вероятностей.

Граф, вершина, ребро. Степень вершины. Число рёбер и суммарная степень вершин. Представление о связности графа. Цепи и циклы. Пути в графах. Обход графа (эйлеров путь). Представление об ориентированном графе. Решение задач с помощью графов.

8 класс

Представление данных в виде таблиц, диаграмм, графиков. Множество, элемент множества, подмножество. Операции над множествами: объединение, пересечение, дополнение. Свойства операций над множествами: переместительное, сочетательное, распределительное, включения. Использование графического представления множеств для описания реальных процессов и явлений, при решении задач.

Измерение рассеивания данных. Дисперсия и стандартное отклонение числовых наборов. Диаграмма рассеивания.

Элементарные события случайного опыта. Случайные события. Вероятности событий. Опыты с равновозможными элементарными событиями. Случайный выбор. Связь между маловероятными и практически достоверными событиями в природе, обществе и науке.

Дерево. Свойства деревьев: единственность пути, существование висячей вершины, связь между числом вершин и числом рёбер. Правило умножения. Решение задач с помощью графов. Противоположные события. Диаграмма Эйлера. Объединение и пересечение событий. Несовместные события. Формула сложения вероятностей. Условная вероятность. Правило умножения. Независимые события. Представление эксперимента в виде дерева. Решение задач на нахождение вероятностей с помощью дерева случайного эксперимента, диаграмм Эйлера.

9 класс

Представление данных в виде таблиц, диаграмм, графиков, интерпретация данных. Чтение и построение таблиц, диаграмм, графиков по реальным данным.

Перестановки и факториал. Сочетания и число сочетаний. Треугольник Паскаля. Решение задач с использованием комбинаторики.

Геометрическая вероятность. Случайный выбор точки из фигуры на плоскости, из отрезка и из дуги окружности.

Испытание. Успех и неудача. Серия испытаний до первого успеха. Серия испытаний Бернулли. Вероятности событий в серии испытаний Бернулли.

Случайная величина и распределение вероятностей. Математическое ожидание и дисперсия. Примеры математического ожидания как теоретического среднего значения величины. Математическое ожидание и дисперсия случайной величины «число успехов в серии испытаний Бернулли».

Понятие о законе больших чисел. Измерение вероятностей с помощью частот. Роль и значение закона больших чисел в природе и обществе.

Планируемые предметные результаты освоения примерной рабочей программы курса (по годам обучения)

Достижение предметных результатов обучающимися с РАС на этапе обучения в основной школе определяется индивидуальными особенностями, связанными как с особенностями познавательной деятельности и неравномерностью развития психических функций, так и социальным опытом аутичных школьников. Поэтому достижение предметных результатов конкретным учащимся может не всегда совпадать с временными границами, распределенными по годам обучения.

Предметные результаты освоения курса «Вероятность и статистика» в 7–9 классах характеризуются следующими умениями.

7 класс

- Читать информацию, представленную в таблицах, на диаграммах; представлять данные в виде таблиц, строить диаграммы (столбиковые (столбчатые) и круговые) по массивам значений.
- Описывать и интерпретировать реальные числовые данные, представленные в таблицах, на диаграммах, графиках.
- Использовать для описания данных статистические характеристики: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах.
- Иметь представление о случайной изменчивости на примерах цен, физических величин, антропометрических данных; иметь представление о статистической устойчивости.

8 класс

- Извлекать и преобразовывать информацию, представленную в виде таблиц, диаграмм, графиков; представлять данные в виде таблиц, диаграмм, графиков.
- Описывать данные с помощью статистических показателей: средних значений и мер рассеивания (размах, дисперсия и стандартное отклонение).
- Находить частоты числовых значений и частоты событий, в том числе по результатам измерений и наблюдений.
- Находить вероятности случайных событий в опытах, зная вероятности элементарных событий, в том числе в опытах с равновозможными элементарными событиями.
- Использовать графические модели: дерево случайного эксперимента, диаграммы Эйлера, числовая прямая.
- Оперировать понятиями: множество, подмножество; выполнять операции над множествами: объединение, пересечение, дополнение; перечислять элементы множеств; применять свойства множеств.
- Использовать графическое представление множеств и связей между ними для описания процессов и явлений, в том числе при решении задач из других учебных предметов и курсов.

9 класс

• Извлекать и преобразовывать информацию, представленную в различных источниках в виде таблиц, диаграмм, графиков; представлять данные в виде таблиц, диаграмм, графиков.

- Решать задачи организованным перебором вариантов, а также с использованием комбинаторных правил и методов.
- Использовать описательные характеристики для массивов числовых данных, в том числе средние значения и меры рассеивания.
- Находить частоты значений и частоты события, в том числе пользуясь результатами проведённых измерений и наблюдений.
- Находить вероятности случайных событий в изученных опытах, в том числе в опытах с равновозможными элементарными событиями, в сериях испытаний до первого успеха, в сериях испытаний Бернулли.
 - Иметь представление о случайной величине и о распределении вероятностей.
- Иметь представление о законе больших чисел как о проявлении закономерности в случайной изменчивости и о роли закона больших чисел в природе и обществе.

ФИЗИКА

Пояснительная записка

Адаптированная рабочая программа для обучающихся с РАС по физике на уровне основного общего образования составлена на основе положений и требований к результатам освоения на базовом уровне основной образовательной программы, представленных в Федеральном государственном образовательном стандарте основного общего образования (ФГОС ООО), а также с учётом Примерной программы воспитания и Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы.

Содержание программы направлено на формирование естественно-научной грамотности учащихся и организацию изучения физики на деятельностной основе. В ней учитываются возможности предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, а также межпредметные связи естественно-научных учебных предметов на уровне основного общего образования.

В программе определяются основные цели изучения физики на уровне основного общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне).

Программа устанавливает распределение учебного материала по годам обучения (по классам), предлагает примерную последовательность изучения тем, основанную на логике развития предметного содержания и учёте возрастных особенностей учащихся, а также примерное тематическое планирование с указанием количества часов на изучение каждой темы и примерной характеристикой учебной деятельности учащихся, реализуемой при изучении этих тем.

При разработке рабочей программы в тематическом планировании должны быть учтены возможности использования электронных (цифровых) образовательных ресурсов, являющихся учебно-методическими материалами (мультимедийные программы, электронные учебники и задачники, электронные библиотеки, виртуальные лаборатории, игровые программы, коллекции цифровых образовательных ресурсов), реализующих дидактические возможности ИКТ, содержание которых соответствует законодательству об образовании.

Примерная рабочая программа не сковывает творческую инициативу учителей и предоставляет возможности для реализации различных методических подходов к преподаванию физики при условии сохранения обязательной части содержания курса.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»

Курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, астрономией и физической географией. Физика — это предмет, который не только вносит основной вклад в естественно-научную картину мира, но и предоставляет наиболее ясные образцы применения научного метода познания, т. е. способа получения достоверных знаний о мире. Наконец, физика — это предмет, который наряду с другими естественно-научными предметами должен дать школьникам представление об увлекательности научного исследования и радости самостоятельного открытия нового знания.

Одна из главных задач физического образования в структуре общего образования состоит в формировании естественно-научной грамотности и интереса к науке у основной массы обучающихся, которые в дальнейшем будут заняты в самых разнообразных сферах деятельности. Но не менее важной задачей является выявление и подготовка талантливых молодых людей для продолжения образования и дальнейшей профессиональной деятельности в области естественно-научных исследований и создании новых технологий.

Согласно принятому в международном сообществе определению, «Естественно-научная грамотность — это способность человека занимать активную гражданскую позицию по общественно значимым вопросам, связанным с естественными науками, и его готовность интересоваться естественно-научными идеями. Научно грамотный человек стремится участвовать в аргументированном обсуждении проблем, относящихся к естественным наукам и технологиям, что требует от него следующих компетентностей:

- научно объяснять явления,
- оценивать и понимать особенности научного исследования,
- интерпретировать данные и использовать научные доказательства для получения выводов».

Изучение физики способно внести решающий вклад в формирование естественно-научной грамотности обучающихся.

Важным аспектом изучения предмета «Физика» для обучающихся с РАС является развитие их жизненных компетенций. Знания и умения, формируемые у обучающихся при изучении физики, во многом основаны на наблюдении и за физическими явлениями, наблюдаемыми в реальной жизни, а также имеют не только теоретическую, но и практическую направленность, реализуемую в урочной и внеурочной деятельности через выполнение лабораторных исследований, опытов, экспериментальных исследований с помощью измерительных приборов и др. Все это позволяют использовать расширять индивидуальный опыт обучающегося с РАС и опираться на практическое применение полученных знаний и умений в жизни.

Цели изучения учебного предмета «физика»

Цели изучения физики на уровне основного общего образования определены в Концепции преподавания учебного предмета

«Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы, утверждённой решением Коллегии Министерства просвещения Российской Федерации.

Цели изучения физики:

- приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении. Достижение этих целей на уровне основного общего образования обеспечивается решением следующих задач:
- приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях;
- приобретение умений описывать и объяснять физические явления с использованием полученных знаний;
- освоение методов решения простейших расчётных задач с использованием физических моделей, творческих и практико-ориентированных задач;
- развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;

- освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики; анализ и критическое оценивание информации;
- знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.

Особенности преподавания предмета «Физика» обучающимся с РАС

При изучении учебного материала по предмету необходимо учитывать, что обучающиеся с РАС могут испытывать специфические трудности в освоении учебного материала. Вследствие трудностей выделения главного или существенного в тексте, а также трудностей в понимании предметной терминологии, у обучающихся с РАС возможно возникновение сложностей с изучением теоретического материала. Также недостаточное понимание терминологии может быть препятствием для правильного решения задач, при том, что само решение задач с применением изученных формул, обычно не вызывает трудностей у обучающихся.

Для преодоления этих трудностей необходимо:

- адаптировать методы представления нового материала, способы текущего контроля и репрезентации полученных знаний;
- целесообразно задействовать возможности дополнительной визуальной поддержки изучаемого материала (иллюстрации, учебные фильмы, виртуальные опыты, личные справочные материалы, представленные в схемах, таблицах и т.п.);
- опираться на практические и лабораторные работы для уточнения теоретических понятий и понимания физических явлений;
- учитывать неравномерность освоения обучающимся с РАС различных тематических областей по данному предмету, необходимо стремиться в создании для обучающегося с РАС ситуации успеха как в урочной, так и внеурочной деятельности по данному предмету.

Также важно учитывать, что у некоторых обучающихся с РАС физика и физические явления входят в сферу их специфических интересов, в изучении которых они могут демонстрировать не только высокую заинтересованность, но и глубокие знания в интересующих областях. В этом случае следует опираться на высокую вовлеченность обучающихся с РАС в изучение физики и создавать для них возможности участия в проектной деятельности по данному предмету.

Особенности структурирования материала.

Примерная АООП ООО РАС по предмету «Физика» распределение материала проведено по годам обучения. При этом в рабочей программе возможны изменения и дополнения в содержании, последовательности изучения тем, количестве часов, использовании организационных форм обучения и т.п. Обоснованность данных изменений определяется индивидуальными психофизическими особенностями конкретных обучающихся с РАС, степенью усвоенности ими учебных тем. Возможно введение в рабочую программу резервного времени в конце изучения каждой темы для дополнительного изучения тем, вызвавших у обучающихся с РАС наибольшие затруднения.

МЕСТО УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» В УЧЕБНОМ ПЛАНЕ

В соответствии с ФГОС ООО физика является обязательным предметом на уровне основного общего образования. Данная программа предусматривает изучение физики на базовом уровне в объёме 235 ч за три года обучения по 2 ч в неделю в 7 и 8 классах и по 3 ч в неделю в 9 классе. В тематическом планировании для 7 и 8 классов предполагается резерв времени, который учитель может использовать по своему усмотрению, а в 9 классе – повторительно-обобщающий модуль.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» 9 класс

Кинематика (12 ч)

Механическое движение. Траектория. Перемещение. Скорость — векторная величина. Модуль вектора скорости. Равномерное прямолинейное движение. Относительность механического движения. Графическое представление равномерного прямолинейного движения.

Ускорение — векторная величина. Равноускоренное прямолинейное движение. Графическое представление равноускоренного прямолинейного движения.

Равномерное движение по окружности. Центростремительное ускорение.

Динамика и законы сохранения (9 ч)

Инерция. Инертность тел. Первый закон Ньютона. Взаимодействие тел. Сила — векторная величина. Второй закон Ньютона. Третий закон Ньютона. Движение и силы. Сила упругости. Сила трения. Сила тяжести. Импульс силы и импульс тела. Закон сохранения импульса. Реактивное движение.

Гравитационные явления (10 ч)

Закон всемирного тяготения. Гравитационная постоянная. Центр тяжести. Движение тела под действием силы тяжести. Искусственные спутники Земли. Перегрузки и невесомость. Сила тяжести на других планетах.

Механические колебания и волны (12 ч)

Механические колебания. Характеристики колебательного движения: амплитуда, период, частота колебаний. Свободные колебания. Колебательная система. Колебания груза на пружине. Нитяной маятник. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью её распространения и периодом (частотой). Звук. Физические и физиологические характеристики звука. Эхо. Инфразвук и ультразвук.

Электромагнитные явления (8 ч)

Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Индукционный ток. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные колебания. Электромагнитные волны. Скорость распространения электромагнитных волн. Практическое применение электромагнитных явлений. Конденсатор. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

Электромагнитная природа света (4 ч)

Свет — электромагнитная волна. Дисперсия света. Цвета тел. Интерференция света. Преломление света. Типы оптических спектров. Спектральный анализ. Поглощение и испускание света атомами. Происхождение линейчатых спектров. Поперечность световых волн. Электромагнитная природа света.

Квантовые явления (10 ч)

Строение атома. Планетарная модель атома. Квантовые постулаты Бора. Линейчатые спектры. Атомное ядро. Состав атомного ядра. Ядерные силы. Дефект масс. Энергия связи атомных ядер. Радиоактивность. Методы регистрации ядерных излучений. Ядерные реакции. Ядерный реактор. Термоядерные реакции. Влияние радиоактивных излучений на живые организмы. Экологические проблемы, возникающие при использовании атомных электростанций. Дозиметрия.

Строение и эволюция Вселенной (3 ч)

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звёзд. Строение Вселенной. Эволюция Вселенной.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Изучение учебного предмета «Физика» на уровне основного общего образования должно обеспечивать достижение следующих личностных, метапредметных и предметных образовательных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

При оценивании личностных результатов необходимо обеспечить индивидуализацию этапности освоения образовательных результатов в связи с неравномерностью и особенностями развития ребенка с РАС. В силу особенностей личностного развития достижение данных результатов обучающимися с РАС не всегда возможно в полном объеме на этапе основного обучения в школе, поэтому рекомендуется оценивать индивидуальную динамику продвижения обучающегося в данной области.

Патриотическое воспитание: проявление интереса к истории и современному состоянию российской физической науки; ценностное отношение к достижениям российских учёных-физиков.

Гражданское и духовно-нравственное воспитание: готовность к активному участию в обсуждении общественнозначимых и этических проблем, связанных с практическим применением достижений физики; осознание важности морально-этических принципов в деятельности учёного.

Эстетическое воспитание: восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности.

Ценности научного познания: осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры; развитие научной любознательности, интереса к исследовательской деятельности.

Формирование культуры здоровья и эмоционального благополучия: осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях; сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека.

Трудовое воспитание: в решении практических задач (в рамках семьи, школы, города, края) технологической и социальной направленности, требующих в том числе и физических знаний; интерес к практическому изучению профессий, связанных с физикой.

Экологическое воспитание: ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознание глобального характера экологических проблем и путей их решения.

Адаптация обучающегося к изменяющимся условиям социальной и природной среды: потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других; повышение уровня своей компетентности через практическую деятельность; потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях; осознание дефицитов собственных знаний и компетентностей в области физики; планирование своего развития в приобретении новых физических знаний; стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний; оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Универсальные познавательные действия

Базовые логические действия:

- выявлять и характеризовать существенные признаки объектов (явлений);
- устанавливать существенный признак классификации, основания для обобщения и сравнения;
- выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;
- выявлять причинно-следственные связи при изучении физических явлений и процессов; делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;
- самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- проводить по самостоятельно составленному плану опыт, несложный физический эксперимент, небольшое исследование физического явления;
- оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования;
- прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

- применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учётом предложенной учебной физической задачи;
- анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями.

Универсальные коммуникативные действия

Нарушение общения является базовым нарушением при расстройствах аутистического спектра, поэтому достижение данных результатов может быть затруднено для обучающихся с РАС. При оценивании овладения УУД в области «Общение» следует оценивать индивидуальные результаты и динамику формирования данных УУД у обучающихся.

Общение:

- в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
 - выражать свою точку зрения в устных и письменных текстах;
- публично представлять результаты выполненного физического опыта (эксперимента, исследования, проекта).

Совместная деятельность (сотрудничество):

- понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;
- принимать цели совместной деятельности, организовывать действия по её достижению: распределять роли, обсуждать процессы и результаты совместной работы;

обобщать мнения нескольких людей;

- выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия.

Универсальные регулятивные действия

У учащихся с РАС зачастую задерживается фактическое вступление в подростковый возраст, что прежде всего выражается в трудностях формирования рефлексивной деятельности и в задержке овладения учебными действиями самостоятельной постановки учебных целей, действий контроля и оценивания собственной деятельности, развитии инициативы в организации учебного сотрудничества.

Самоорганизация:

- выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний;
- ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
- самостоятельно составлять алгоритм решения физической задачи или плана исследования с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
 - делать выбор и брать ответственность за решение.

Самоконтроль (рефлексия):

- давать адекватную оценку ситуации и предлагать план её изменения;
- объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту;
- вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
 - оценивать соответствие результата цели и условиям.

Эмоциональный интеллект:

- ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого.

Принятие себя и других:

– признавать своё право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Достижение предметных результатов обучающимися с РАС на этапе обучения в основной школе определяется индивидуальными особенностями, связанными как с особенностями познавательной деятельности и неравномерностью развития психических функций, так и социальным опытом аутичных школьников. Поэтому достижение предметных результатов конкретным учащимся может не всегда совпадать с временными границами достижения результатов, распределенных по годам обучения.

7 класс

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: физические и химические явления; наблюдение, эксперимент, модель, гипотеза; единицы физических величин; атом, молекула, агрегатные состояния вещества (твёрдое, жидкое, газообразное); механическое движение (равномерное, неравномерное, прямолинейное), траектория, равнодействующая сил, деформация (упругая, пластическая), невесомость, сообщающиеся сосуды;
- различать явления (диффузия; тепловое движение частиц вещества; равномерное движение; неравномерное движение; инерция; взаимодействие тел; равновесие твёрдых тел с закреплённой осью вращения; передача давления твёрдыми телами, жидкостями и газами;

атмосферное давление; плавание тел; превращения механической энергии) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;

- распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: примеры движения с различными скоростями в живой и неживой природе; действие силы трения в природе и технике; влияние атмосферного давления на живой организм; плавание рыб; рычаги в теле человека; при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (масса, объём, плотность вещества, время, путь, скорость, средняя скорость, сила упругости, сила тяжести, вес тела, сила трения, давление (твёрдого тела, жидкости, газа), выталкивающая сила, механическая работа, мощность, плечо силы, момент силы, коэффициент полезного действия механизмов, кинетическая и потенциальная энергия); при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя правила сложения сил (вдоль одной прямой),закон Гука, закон Паскаля, закон Архимеда, правило равновесия рычага (блока), «золотое правило» механики, закон сохранения механической энергии; при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические явления, процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 1–2 логических шагов с опорой на 1–2 изученных свойства физических явлений, физических закона или закономерности;
- решать расчётные задачи в 1–2 действия, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, подставлять физические величины в формулы и проводить расчёты, находить справочные данные, необходимые для решения задач, оценивать реалистичность полученной физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов; в описании исследования выделять проверяемое предположение (гипотезу), различать и интерпретировать полученный результат, находить ошибки в ходе опыта, делать выводы по его результатам;
- проводить опыты по наблюдению физических явлений или физических свойств тел: формулировать проверяемые предположения, собирать установку из предложенного оборудования, записывать ход опыта и формулировать выводы;
- выполнять прямые измерения расстояния, времени, массы тела, объёма, силы и температуры с использованием аналоговых и цифровых приборов; записывать показания приборов с учётом заданной абсолютной погрешности измерений;
- проводить исследование зависимости одной физической величины от другой с использованием прямых измерений (зависимости пути равномерно движущегося тела от времени движения тела; силы трения скольжения от силы давления, качества обработки поверхностей тел и независимости силы трения от площади соприкосновения тел; силы упругости от удлинения пружины; выталкивающей силы от объёма погружённой части тела и от плотности жидкости, её независимости от плотности тела, от глубины, на которую погружено тело; условий плавания тел, условий равновесия рычага и блоков); участвовать в планировании учебного исследования, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости физических величин в виде предложенных таблиц и графиков, делать выводы по результатам исследования;
 - проводить косвенные измерения физических величин (плотность вещества жидкости

и твёрдого тела; сила трения скольжения; давление воздуха; выталкивающая сила, действующая на погружённое в жидкость тело; коэффициент полезного действия простых механизмов), следуя предложенной инструкции: при выполнении измерений собирать экспериментальную установку и вычислять значение искомой величины;

- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- указывать принципы действия приборов и технических устройств: весы, термометр, динамометр, сообщающиеся сосуды, барометр, рычаг, подвижный и неподвижный блок, наклонная плоскость;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: подшипники, устройство водопровода, гидравлический пресс, манометр, высотомер, поршневой насос, ареометр), используя знания о свойствах физических явлений и необходимые физические законы и закономерности;
- приводить примеры / находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять отбор источников информации в сети Интернет в соответствии с заданным поисковым запросом, на основе имеющихся знаний и путём сравнения различных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные краткие письменные и устные сообщения на основе 2–3 источников информации физического содержания, в том числе публично делать краткие сообщения о результатах проектов или учебных исследований; при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;
- при выполнении учебных проектов и исследований распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий, адекватно оценивать собственный вклад в деятельность группы; выстраивать коммуникативное взаимодействие, учитывая мнение окружающих.

8 класс

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: масса и размеры молекул, тепловое движение атомов и молекул, агрегатные состояния вещества, кристаллические и аморфные тела, насыщенный и ненасыщенный пар, влажность воздуха; температура, внутренняя энергия, тепловой двигатель; элементарный электрический заряд, электрическое поле, проводники и диэлектрики, постоянный электрический ток, магнитное поле;
- различать явления (тепловое расширение/сжатие, теплопередача, тепловое равновесие, смачивание, капиллярные явления, испарение, конденсация, плавление, кристаллизация (отвердевание), кипение, теплопередача (теплопроводность, конвекция, излучение); электризация тел, взаимодействие зарядов, действия электрического тока, короткое замыкание, взаимодействие магнитов, действие магнитного поля на проводник с током, электромагнитная индукция) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
- распознавать проявление изученных физических явлений в окружающем мире, в том числе физические явления в природе: поверхностное натяжение и капиллярные явления в природе, кристаллы в природе, излучение Солнца, замерзание водоёмов, морские бризы, образование росы, тумана, инея, снега; электрические явления в атмосфере, электричество

живых организмов; магнитное поле Земли, дрейф полюсов, роль магнитного поля для жизни на Земле, полярное сияние; при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений;

- описывать изученные свойства тел и физические явления, используя физические величины (температура, внутренняя энергия, количество теплоты, удельная теплоёмкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия тепловой машины, относительная тока, воздуха, электрический заряд, сила электрическое напряжение, влажность сопротивление проводника, удельное сопротивление вещества, работа и мощность электрического тока); при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя основные положения молекулярно-кинетической теории строения вещества, принцип суперпозиции полей (на качественном уровне), закон сохранения заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон сохранения энергии; при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 1-2 логических шагов с опорой на 1-2 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи в 2–3 действия, используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостаток данных для решения задачи, выбирать законы и формулы, необходимые для её решения, проводить расчёты и сравнивать полученное значение физической величины с известными данными;
- распознавать проблемы, которые можно решить при помощи физических методов; используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы;
- проводить опыты по наблюдению физических явлений или физических свойств тел (капиллярные явления, зависимость давления воздуха от его объёма, температуры; скорости процесса остывания/нагревания при излучении от цвета излучающей/поглощающей поверхности; скорость испарения воды от температуры жидкости и площади её поверхности; электризация тел и взаимодействие электрических зарядов; взаимодействие постоянных магнитов, визуализация магнитных полей постоянных магнитов; действия магнитного поля на проводник с током, свойства электромагнита, свойства электродвигателя постоянного тока): формулировать проверяемые предположения, собирать установку из предложенного оборудования; описывать ход опыта и формулировать выводы;
- выполнять прямые измерения температуры, относительной влажности воздуха, силы тока, напряжения с использованием аналоговых приборов и датчиков физических величин; сравнивать результаты измерений с учётом заданной абсолютной погрешности;
- проводить исследование зависимости одной физической величины от другой с использованием прямых измерений (зависимость сопротивления проводника от его длины, площади поперечного сечения и удельного сопротивления вещества проводника; силы тока, идущего через проводник, от напряжения на проводнике; исследование последовательного и параллельного соединений проводников): планировать исследование, собирать установку и выполнять измерения, следуя предложенному плану, фиксировать результаты полученной зависимости в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин (удельная теплоёмкость вещества, сопротивление проводника, работа и мощность электрического тока): планировать измерения, собирать экспериментальную установку, следуя предложенной инструкции, и

вычислять значение величины;

- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: система отопления домов, гигрометр, паровая турбина, амперметр, вольтметр, счётчик электрической энергии, электроосветительные приборы, нагревательные электроприборы (примеры), электрические предохранители; электромагнит, электродвигатель постоянного тока), используя знания о свойствах физических явлений и необходимые физические закономерности;
- распознавать простые технические устройства и измерительные приборы по схемам и схематичным рисункам (жидкостный термометр, термос, психрометр, гигрометр, двигатель внутреннего сгорания, электроскоп, реостат); составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей;
- приводить примеры/находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять поиск информации физического содержания в сети Интернет, на основе имеющихся знаний и путём сравнения дополнительных источников выделять информацию, которая является противоречивой или может быть недостоверной;
- использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и краткие устные сообщения, обобщая информацию из нескольких источников физического содержания, в том числе публично представлять результаты проектной или исследовательской деятельности; при этом грамотно использовать изученный понятийный аппарат курса физики, сопровождать выступление презентацией;
- при выполнении учебных проектов и исследований физических процессов распределять обязанности в группе в соответствии с поставленными задачами, следить за выполнением плана действий и корректировать его, адекватно оценивать собственный вклад в деятельность группы; выстраивать коммуникативное взаимодействие, проявляя готовность разрешать конфликты.

9 класс

Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- использовать понятия: система отсчёта, материальная точка, траектория, относительность механического движения, деформация (упругая, пластическая), трение, центростремительное ускорение, невесомость и перегрузки; центр тяжести; абсолютно твёрдое тело, центр тяжести твёрдого тела, равновесие; механические колебания и волны, звук, инфразвук и ультразвук; электромагнитные волны, шкала электромагнитных волн, свет, близорукость и дальнозоркость, спектры испускания и поглощения; альфа-, бетаи гамма-излучения, изотопы, ядерная энергетика;
- различать явления (равномерное и неравномерное прямолинейное движение, равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, реактивное движение, колебательное движение (затухающие и вынужденные колебания), резонанс, волновое движение, отражение звука, прямолинейное распространение, отражение и преломление света, полное внутреннее отражение света, разложение белого света в спектр и сложение спектральных цветов, дисперсия света, естественная радиоактивность, возникновение линейчатого спектра излучения) по описанию их характерных свойств и на основе опытов, демонстрирующих

данное физическое явление;

- распознавать проявление изученных физических явлений в окружающем мире (в том числе физические явления в природе: приливы и отливы, движение планет Солнечной системы, реактивное движение живых организмов, восприятие звуков животными, землетрясение, сейсмические волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое действие видимого, ультрафиолетового и рентгеновского излучений; естественный радиоактивный фон, космические лучи, радиоактивное излучение природных минералов; действие радиоактивных излучений на организм человека), при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений;
- описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение, путь, угловая скорость, сила трения, сила упругости, сила тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия тела, поднятого над поверхностью земли, потенциальная энергия сжатой пружины, кинетическая энергия, полная механическая энергия, период и частота колебаний, длина волны, громкость звука и высота тона, скорость света, показатель преломления среды); при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
- характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях; при этом давать словесную формулировку закона и записывать его математическое выражение;
- объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяснение из 2–3 логических шагов с опорой на 2–3 изученных свойства физических явлений, физических законов или закономерностей;
- решать расчётные задачи (опирающиеся на систему из 2–3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостающие или избыточные данные, выбирать законы и формулы, необходимые для решения, проводить расчёты и оценивать реалистичность полученного значения физической величины;
- распознавать проблемы, которые можно решить при помощи физических методов; используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы, интерпретировать результаты наблюдений и опытов;
- проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии; зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины и независимость от амплитуды малых колебаний; прямолинейное распространение света, разложение белого света в спектр; изучение свойств изображения в плоском зеркале и свойств изображения предмета в собирающей линзе; наблюдение сплошных и линейчатых спектров излучения): самостоятельно собирать установку из избыточного набора оборудования; описывать ход опыта и его результаты, формулировать выводы;
- проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины (фокусное расстояние собирающей линзы); обосновывать выбор способа измерения/измерительного прибора;
 - проводить исследование зависимостей физических величин с использованием

прямых измерений (зависимость пути от времени при равноускоренном движении без начальной скорости; периода колебаний математического маятника от длины нити; зависимости угла отражения света от угла падения и угла преломления от угла падения): планировать исследование, самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин с учётом заданной погрешности измерений в виде таблиц и графиков, делать выводы по результатам исследования;

- проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, жёсткость пружины, коэффициент трения скольжения, механическая работа и мощность, частота и период колебаний математического и пружинного маятников, оптическая сила собирающей линзы, радиоактивный фон): планировать измерения; собирать экспериментальную установку и выполнять измерения, следуя предложенной инструкции; вычислять значение величины и анализировать полученные результаты;
- соблюдать правила техники безопасности при работе с лабораторным оборудованием;
- различать основные признаки изученных физических моделей: материальная точка, абсолютно твёрдое тело, точечный источник света, луч, тонкая линза, планетарная модель атома, нуклонная модель атомного ядра;
- характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: спидометр, датчики положения, расстояния и ускорения, ракета, эхолот, очки, перископ, фотоаппарат, оптические световоды, спектроскоп, дозиметр, камера Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности;
- использовать схемы и схематичные рисунки изученных технических устройств, измерительных приборов и технологических процессов при решении учебно-практических задач; оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- приводить примеры/находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- осуществлять поиск информации физического содержания в сети Интернет, самостоятельно формулируя поисковый запрос, находить пути определения достоверности полученной информации на основе имеющихся знаний и дополнительных источников;
- использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами конспектирования текста, преобразования информации из одной знаковой системы в другую;
- создавать собственные письменные и устные сообщения на основе информации из нескольких источников физического содержания, публично представлять результаты проектной или исследовательской деятельности; при этом грамотно использовать изученный понятийный аппарат изучаемого раздела физики и сопровождать выступление презентацией с учётом особенностей аудитории сверстников.

Распределение часов по темам.

Тема	Кол-во часов
Кинематика	17
Динамика	12
Гравитационные явления	15
Колебания и волны	14
Электромагнитные явления	13
Электромагнитная природа света	8
Квантовые явления	15
Строение и эволюция Вселенной	5